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 Simplest conceptual model of a population is that it is 
“closed”. This has two components:  

 

 (a) Demographic closure. No recruitment and no mortality  

 

 (b) Geographic closure. Animals don’t leave the population (no 
emigration) or enter the population (no immigration).  

 

 Model is that of a fish bowl or other spatially constrained 
population over a short period of time 

 

 Closure cannot possibly hold in real populations.  

Closed populations 



 Sampling model: individuals are randomly selected from a 
population with probability p == per sample encounter or 
capture or detection probability  

 

 Conceptually this is a Bernoulli sampling model: whether 
each individual appears in the sample is a “coin toss”:  

 

      y[i] ~ Bernoulli(p)    for i = 1, 2, … N 

    

         N = population size 

 

 CR models: many different ways that p can vary (later…)  

 

Sampling a closed population  



 

 We estimate p by obtaining replicate samples from the 
population.  Let K = number of replicate samples. Individuals are 
released after each sample, may be recaptured.  

 

 Produces individual encounter histories (n x K matrix) 

                               sample 1          sample 2             sample 3   TOTAL 

Individual 1             1                         0                            1             y1 = 2 

Individual 2             0                         0                            1             y2 = 1 

Individual 3             1                         1                            1             y3 = 3 

                etc.. 

Individual n             0                         1                            0             yn = 1 

Closed populations: data structure 



 We need to estimate p in order to estimate N 
  
         Under random sampling:  
  
           n ~ Binomial(N, 𝑝 ) 
 
The heuristic estimator of N: 
 
 E(n) =𝑝 *N 
 
 N = n/𝑝  
 
 (“moment estimator ”, equate the 1 st moment of our 
    statistic n to its expected value and solve)  

 

Closed population models 

This is the probability that an individual 

appears in the sample over the K occasions. 

  

𝑝 = 1 − (1 − 𝑝)𝐾 

 

 



 

 Estimating p is really important!  

 

 How do we estimate p? 

 

 Dozens of models have been proposed that differ mainly in 
how p varies by individuals, time, etc..  

Closed population models 



 The standard models:  

 M0 = “the null model”, p is constant in all dimensions  

 Mt = p is a function of sample occasion , p(t)  

 Mb = behavioral response model. Trap happiness or shyness  

 Mh = individual heterogeneity 

 Mbt = time + behavior, or time*behavior 

 Mbh, Mth, Mbth 

 

 See Kery and Schaub (2012) Ch. 6 for how to do all of these 
in WinBUGS/JAGS 

Otis et al (1978) characterization of 
closed models  



Model M0 is a common point of reference in capture -recapture. 
It consists of the following assumptions:  

 

 Encounter probability, p, constant for all sample occasions and all 
individuals  

 

 Then, encounter observations are Bernoulli random variables 
(just coin flips) and the individual frequencies are binomial: 

 

             y[i,k] ~ Bernoulli(p)   for all i=1,2,..,N and k=1,2,…,K  

     -- same as --  

             y[i] ~ Binomial(K, p) for all i=1,2,…,N  

 

 

MODEL M0 



 

 Looks like binomial GLM, logistic regression , etc..  

 

 Key technical issue: unlike a typical GLM, N, the size of 
some ideal data set, is unknown 

 

 3 things we have to talk about:  

 

 “conditional likelihood”  

 “full likelihood” 

 “data augmentation” 

ANALYSIS OF MODEL M0 



 Under model M0 assumptions, encounter frequencies are 
binomial:  
 

             y i ~ Binomial(K, p) for all i=1,2,…,N  
 

 But N is not known, we only observe y i IF y i > 0. i.e., the 
observed data have a “zero-truncated binomial” distribution  
 

  f(y) = Bin(y; K, p)/(1-(1-p)K) 
 

 This is the basis of the “conditional likelihood” for 
estimating parameters of closed population models.  
 

 This is called the “conditional likelihood” because it is 
“conditional on capture”, i.e., conditional on y>0, or 
“conditional on n”  
 
 
 
 
 

The binomial model and the likelihood 



 

 

lik0.cond<-function(parms){ 

     p<-  plogis(parms[1]) 

     pcap<- 1-(1-p)^K 

     part1<- sum(log(dbinom(y,K,p)/pcap)) 

     -1*(part1) 

} 

 

 

Conditional likelihood in R 



 But n is also part of the observable data. What is the 
distribution of n? 
 
  n ~ Bin(N, 1-(1-p)K) 

 
 So the “joint likelihood” or “full likelihood” is the product of 

the previous bit (the conditional likelihood) and this bit for n:  
 

 
 Full likelihood =  [conditional likelihood] * Bin(N, 1-(1-p)K) 

         = binomial likelihood with combinatorial term 
 

 
This is called the “full likelihood” “joint likelihood” 
“unconditional likelihood” because it has N in it . 
 

The full likelihood 



 

lik0<-function(parms){ 

 p<-  plogis(parms[1]) 

 n0<-  exp(parms[2]) 

 N <-nind + n0 

 part1<- sum(log(dbinom(y,K,p))) 

 part2<-lgamma(N+1) -                   

 lgamma(n0+1) + n0*log(dbinom(0,K,p)) 

-1*(part1 + part2) 

} 

 

In R, lgamma(N+1) = log(factorial(N)) 

 

The full likelihood as an R function 



Simulate some data and obtain the MLE 

 

R work session 

 

 



Hair snare study 

 

J = 38 hair snares 

K = 8 weeks of sampling 

n = 47 individuals captured 

 

Load the data: 

 

library(scrbook) 

data(beardata) 

Fort Drum bear data 



 

> library(scrbook) 

> data(beardata) 

 

> str(beardata) 

List of 4 

 $ trapmat  :'data.frame':      38 obs. of  2 variables: 

  ..$ V1: num [1:38] 448 439 439 442 442 ... 

  ..$ V2: num [1:38] 4886 4881 4879 4884 4881 ... 

 $ bearArray: num [1:47, 1:38, 1:8] 0 0 0 0 0 0 0 0 0 0 ... 

 $ flat     : num [1:151, 1:4] 1 1 1 1 1 1 1 1 1 1 ... 

  ..- attr(*, "dimnames")=List of 2 

  .. ..$ : NULL 

  .. ..$ : chr [1:4] "Session" "ID" "Occasion" "trapID" 

 $ sex      : num [1:47] 1 1 2 1 1 1 1 2 1 2 ... 

 

Fort Drum bear data 



 In practice we have too much data for ordinary capture -
recapture models 

 Individuals can be captured at > 1 trap during a sample occasion  

 

 Therefore we have to summarize the data (i.e., throw some 
of it out) 

 

 A typical encounter data file (EDF) has 3 pieces of 
information 

 Individual captured 

 Trap of capture 

 Occasion of capture 

BASIC DATA FORMATTING 



 A typical encounter data file (EDF) has 3 pieces of 
information 
 Individual captured 

 Trap of capture 

 Occasion of capture 

 

 It is convenient to organize this into a 3 -dimensional array: 
individuals x traps x occasions 

 

 In order to fit ordinary CR models we need to reduce this to 
a 2-dimensional matrix: individuals x occasions   

 

 Lets do this for the Fort Drum bear data  

 

BASIC DATA FORMATTING 



 bearArray =  the encounter data, is a 3-d array…..  

 

 Have to summarize over traps to fit ordinary closed models 

 

 Multiple captures in a sample occasion have no meaning 

 
y <- beardata$bearArray 

y <- apply(bearArray,c(1,3),sum) 

y[y>1] <- 1         # multiple captures are redundant. 

y.summed <- apply(y,1,sum)# total encounters out of K 

 

 We model either the matrix y  or the vector y.summed   

 

 

THIS IS REALLY IMPORTANT! 



R work session 

Fort Drum bear data 



Model M0 

 

Its essence is a simple binomial model, just like logistic regression  

 

 Conditional likelihood:  “zero -truncated” binomial.  Single parameter 
p.  

 

 Full likelihood:  binomial likelihood (has a term for n0 “all  zero” 
encounter histories)  

 

Up next: Bayesian analysis  

 

 We analyze the full l ikelihood using a method known as data 
augmentation. This creates a  “zero -inflated” binomial model.  

  

 Summary so far 



 If N is known, Model M0 is 
just a logistic regression:  

 

model { 

 

p~dunif(0,1) 

 

for (i in 1:N){ 

     y[i]~dbin(p,K) 

    } 

 

} 

 

BAYESIAN ANALYSIS OF CLOSED 
CAPTURE-RECAPTURE MODELS 

 

But N is not known. Conceptually we 

could just put a prior on N, e.g., N ~ 

Dunif(0, 1000), and analyze the 

model using standard methods of 

MCMC 

 

However, the size of the data set, N, 

is a parameter of the model so as N 

is updated in the MCMC algorithm the 

size of the data set must change. 

Can’t do this in WinBUGS/JAGS. 

 



 Prior distributions:  

 
 N ~ Dunif(0, M), for M some big number 

 

 p ~ unif(0,1) 

 

Not amenable to a naïve implementation by MCMC ( esp in 
BUGs/JAGS) because N, a parameter, the number of 
individual effects, is unknown. “variable dimension 
parameter space”  

 

 Therefore: 

 RJMCM/”Trans-dimensional” Gibbs sampling  

 Data augmentation <- easier, can be done in BUGS 

Bayesian analysis of closed population 
models 



 N ~ Dunif(0,M) implies a “data set” with M -n all-zero 
encounter histories.  Some of the y=0 observations 
correspond to real individuals and some of them do not.  

 

 Implementation: We add too many zeroes to the dataset –  
creating a zero-inflated version of the known-N dataset 

 

 Model for the augmented data set is a zero-inflated binomial 

 

 THIS IS AN OCCUPANCY MODEL! 

 

 

DATA AUGMENTATION: HEURISTIC 



 Occupancy data  

Site    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

           0   0   0   0   0    

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

  M      0   0   0   0   0     

 

Zeros  are  observed.  
Allocate  zeros  to  
“fixed” and 
“sampling”  

HEURISTIC DEVELOPMENT 

 Model  M0 

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

 

 

 

 

 

 

 

Zeros  are  NOT 
observed.   How many 
“sampling” zeros  are  
there?  

 Model  M0 +  DA 

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

           0   0   0   0   0    

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

   M     0   0   0   0   0     

 

Bound N <= M where 
M is  f ixed.  

Treat  Model  M0 as  an 
occupancy model .   

 

 



 DA makes capture-recapture models the same as occupancy 
models.  

 

 The parameter ψ  replaces population size N. They are 
related as follows:  N ~ Binomial(M, ψ) 

 

 

DA AND OCCUPANCY MODELS 



 N ~ Unif(0,M) 

 Same as: 

 N|psi ~ Bin(M, psi)   M = fixed 

 psi ~ uniform(0,1) 

This 2-part prior implies:  N ~ Uniform(0,M) , standard distribution 
theory result 

 Same as: 

 z[i] ~ Bern(psi) for i=1,2,…,M  “data augmentation variables”  

 y[i] ~ Bern(p*z[i]) 

 psi ~ dunif(0,1)   “data augmentation parameter”  

 The augmented data create a super-population of 
individuals available to be “recruited” by the MCMC 
algorithm. 

WHY CAN WE DO THIS? 



 Fit Model M0 in WinBUGS and JAGS using data 
augmentation  

 

 

 

Fort Drum bear data 



 The essence of closed CR models is the binomial observation 
model for encounter frequencies  

 

 Data augmentation is something you are probably 
unfamiliar with but it is really easy to analyze CR models 
using MCMC (esp. in BUGS).  

 

 DA converts all capture-recapture models to “zero-inflated” 
models of one sort or another.  

 

 We analyze all CR and SCR models using data 
augmentation. [even when we write our own code!]  

SUMMARY OF PART 1 


